

A complete product line based on UBE U-varnish technology

High-performance

Competitive advantage

U – P i a · · · Creating UTOPIA with UBE

"UPIA®" is a complete Polyimide varnish product line based on UBE's "U-varnish" brand, with new performance varnish grades developed from UBE's extensive experience and Superior technology.

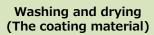
UBE provides value and delivers solutions for a variety of applications through exceptional customer support.

Polyimide varnish "UPIA®" is a polyamic acid precursor solution of polyimide (High-performance engineering plastics). It is the base for polyimide coated films which feature non-soluble and non-melting properties, high heat, chemical resistance, and electric insulation properties achieved through high temperature curing and imidization.

--For lithium-ion batteries--

For 2ndary battery binder

Is there something that can be used for secondary battery applications?


We have optimized UPIA-LB for lithium-ion battery binder applications.

- For battery binder applications, we strengthened and optimized the required characteristics according to our customers needs.
- UPIA-LB has the necessary toughness to overcome significant expansion of the electrode material.
- This varnish has high adhesion to Copper, aluminum and SUS, so you should improve the adhesion to the current collector compared to other binder types.
- This polyimide binder is highly resistant to the chemical exposure, it maintains performance, such as cracking resistance and adhesive strength, even immersed in the electrolyte solution.
- It has excellent long-term heat resistance, so it is able to be used in high-temperature applications.
- UPIA-LB has excellent physical properties, even with relatively low temperature processing.

	Property			UPIA-AT (U-Varnish-A)		UPIA-LB				Measurement	Measurement
				1001		1001		2001		condition	Method
Thickness			μm	20	20	20	20	20	20		
Heat treatment highest temp.			°C	200	350	200	350	150	200		
Solvent			_	NMP		NMP		Water			
Solid content			wt%	18.0	±1.0	30.0±1.0		18.0±1.0		350°C,30min	
Sol	Solution viscosity			5=	±1	5±1		0.5±0.2		E-type, 30°C	
Film properties	Cu	adhesion	_	5B	5B	5B	5B	5B	5B		ASTM D3359
	Al adhesion		_	5B	5B	5B	5B	5B	5B		ASTM D3359
	SUS adhesion		_	5B	5B	5B	5B	5B	5B		ASTM D3359
	Ten	sile strength	MPa	175	229	199	278	127	132		ASTM D882
	Elongation		%	70	92	88	107	53	45		ASTM D882
	Tensile modulus		GPa	3.2	3.7	3.2	4.0	2.8	3.2		ASTM D882
	Break energy		MJ/m ³	86	150	118	191	70	75		ASTM D882
	Electrolytic liquid resistance	Weight change rate	%	+1.2	+0.2	+0.1	±0	±0	±0	25°C×24h Electrolytic liquid dipping	
		Thickness change rate	%	+0.5	±0	+0.1	±0	±0	±0		
		Tensile strength retention	%	97	100	103	102	98	100		ASTM D882
		Elongation retention	%	100	99	103	103	104	100		ASTM D882
		Break energy retention	%	100	100	102	104	101	100		ASTM D882

UBE Corporation

Usage (Examples)

Method Example: Ultrasonic cleaning method

Solvent cleaning method Detergent method

Coating of "UPIA®" (Room temperature)

Heating (Drying/Imidization)

Method Example: Spin coating

Slit coating Dip coating Spray coating Applicator etc.

Method Example: Hot air drying method

Vacuum heating drying method

Packing and handling precautions

(1) Standard Packing

Packing	18kg can			
racking	5kg can			

(2) Handling precautions

- "UPIA®" is extremely stable when properly stored. Please keep it in a cool, dark place when storing for a long period of time. Always keep the lid tightly sealed when storing to prevent hydrolysis due to moisture absorption. Immediately wipe off any varnish that comes into contact with the skin and then thoroughly wash the affected area.
- Please refer to Safety Data Seat (SDS) before use.
- •"UPIA®" NMP based systems are classified as a Type 3 Petroleum Substance, Type 4 Hazardous Material under Japan's Fire Defense Law (designated quantity: 2,000 liters).

(3) Content Statement

The content provided is based on materials, data and information currently available. No guarantee is made with regard to content, physical properties or hazardous and harmful effects. Furthermore, handling precautions relate to normal handling. In unique situations requiring special handling, please use safety measures appropriate for the application and process.

Polyimide Business Department

Seavans North Bldg, 1-2-1, Shibaura, Minato-Ku, Tokyo, Japan, 105-8449

TEL: +81(3)5419-6180 FAX: +81(3)5419-6258

<URL> https://www.ube.com/upilex/en/